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Abstract. We extend a recent chiral approach to nuclear matter of Lutz et al. (Phys. Lett. B 474, 7
(2000)) by calculating the underlying (complex-valued) single-particle potential U(p, kf )+ i W (p, kf ). The
potential for a nucleon at the bottom of the Fermi sea, U(0, kf0) = −20.0MeV, comes out as much too
weakly attractive in this approach. Even more seriously, the total single-particle energy does not rise
monotonically with the nucleon momentum p, implying a negative effective nucleon mass at the Fermi
surface. Also, the imaginary single-particle potential, W (0, kf0) = 51.1MeV, is too large. More realistic
single-particle properties together with a good nuclear-matter equation of state can be obtained if the
short-range contributions of non-pionic origin are treated in mean-field approximation (i.e. if they are
not further iterated with 1π-exchange). We also consider the equation of state of pure neutron matter
Ēn(kn) and the asymmetry energy A(kf ) in that approach. The downward bending of these quantities
above nuclear-matter saturation density seems to be a generic feature of perturbative chiral pion-nucleon
dynamics.

PACS. 12.38.Bx Perturbative calculations – 21.65.+f Nuclear matter

1 Introduction

The present status of the nuclear-matter problem is that
a quantitatively successful description can be achieved,
using advanced many-body techniques [1], in a non-
relativistic framework when invoking an adjustable three-
body force. Alternative relativistic mean-field approaches,
including non-linear terms with adjustable parameters
or explicitly density-dependent point couplings, are also
widely used for the calculation of nuclear-matter proper-
ties and finite nuclei [2].

In recent years a novel approach to the nuclear-matter
problem based on effective field theory (in particular chiral
perturbation theory) has emerged [3–5]. The key element
there is a separation of long- and short-distance dynam-
ics and an ordering scheme in powers of small momenta.
At nuclear-matter saturation density the Fermi momen-
tum kf0 and the pion mass mπ are comparable scales
(kf0 � 2mπ), and therefore pions must be included as ex-
plicit degrees of freedom in the description of the nuclear
many-body dynamics. The contributions to the energy per
particle of isospin-symmetric nuclear matter Ē(kf ) origi-
nating from chiral pion-nucleon dynamics have been cal-
culated up to three-loop order in refs. [3,4]. Both calcula-
tions include the 1π-exchange Fock diagram and the iter-
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ated 1π-exchange Hartree and Fock diagrams. In ref. [4]
irreducible 2π-exchange is also taken into account and a
momentum cut-off Λ is used to regularize the few diver-
gent parts associated with chiral 2π-exchange. The result-
ing cut-off–dependent contribution to Ē(kf ) is completely
equivalent to that of a zero-range NN-contact interaction
(see eq. (15) in ref. [4]). At that point the (earlier) work of
Lutz et al. [3] follows a different strategy. Two zero-range
NN-contact interactions (acting in 3S1 and 1S0 NN-states)
proportional to the parameters g0+g2

A/4 and g1+g2
A/4 are

introduced (see eq. (4) in ref. [3]). The components pro-
portional to g2

A/4 cancel the zero-range contribution gen-
erated by the 1π-exchange Fock diagram. The other com-
ponents proportional to g0 and g1 are understood to sub-
sume all non-perturbative short-range NN-dynamics rele-
vant at densities around nuclear-matter saturation density
ρ0. In order to be consistent with this interpretation the
NN-contact vertices proportional to g0,1 are allowed to oc-
cur only in first order. Furthermore, according to ref. [6]
pions can be treated perturbatively (at least) in the 1S0

partial wave of NN-scattering if the zero-range pieces they
generate are removed order by order. Therefore, the NN-
contact vertex proportional to g2

A/4 occurs also in higher
orders (see fig. 1 in ref. [3] which includes diagrams with
“filled circle” and “open circle” vertices).
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Fig. 1. Additional in-medium diagrams generated by the NN-
contact interactions introduced in ref. [3]. The two NN-contact
interactions proportional to γ+1 and γn +1 are symbolized by
the filled square vertex. The last diagram is to be understood
such that quadratic terms (such as γ2, γγn and γ2

n) are omitted.

Despite their differences in the treatment of the effec-
tive short-range NN-dynamics both approaches [3,4] are
able to reproduce correctly the empirical nuclear-matter
properties (saturation density ρ0, binding energy per par-
ticle −Ē(kf0) and compressibility K) by adjusting only
one parameter, either the coupling g0 + g1 � 3.23 or the
cut-off Λ � 0.65 GeV. Note that in dimensional regular-
ization all diagrams evaluated in ref. [3] are finite. In the
chiral approach of the Munich group [4,5] the asymme-
try energy A(kf ), the energy per particle of pure neutron
matter Ēn(kn) as well as the (complex) single-particle
potential U(p, kf ) + iW (p, kf ) below the Fermi surface
(p ≤ kf ) have been calculated. Good results (in par-
ticular for the asymmetry energy, A(kf0) = 33.8 MeV,
and the depth of the single-particle potential, U(0, kf0) =
−53.2 MeV) have been obtained with the single cut-off
scale Λ � 0.65 GeV adjusted to the binding energy per
particle −Ē(kf0) = 15.3 MeV. Moreover, when extended
to finite temperatures [7] this approach reproduces the
liquid-gas phase transition of isospin-symmetric nuclear
matter, however, with a too high value of the critical tem-
perature Tc = 25.5 MeV.

It is the purpose of this work to investigate in the
approach of Lutz et al. [3] the single-particle potential
U(p, kf )+ iW (p, kf ) in isospin-symmetric nuclear matter,
as well as the neutron matter equation of state Ēn(kn) and
the asymmetry energy A(kf ). We conclude that the treat-
ment of the effective short-range NN-interaction in that
approach is insufficient in order to reproduce all empirical
nuclear-matter properties.

2 Nuclear-matter equation of state

Let us first reconsider the equation of state of isospin-
symmetric nuclear matter as it follows from the calcula-
tion of ref. [3]. Even though all contributions to the energy
per particle Ē(kf ) have been given explicitly in ref. [3] we
prefer to write down again the extra terms generated by
the NN-contact interactions proportional to g0,1 + g2

A/4
(using a more compact notation). The first diagram in
fig. 1 gives rise to a contribution to the energy per parti-
cle of the form

Ē(kf ) = −
(γ + 1)g2

Ak3
f

(4πfπ)2
, (1)

where we have introduced (for notational convenience) the
coefficient γ by the relation (γ+1)g2

A/2 = g0+g1+g2
A/2. In

the second and third diagrams in fig. 1 the contact inter-
action proportional to γ + 1 is iterated with 1π-exchange
or with itself (dropping the γ2-contribution). Putting a
medium insertion1 at each of the two nucleon propagators
with equal orientation one gets

Ē(kf ) =
3(γ + 1)g4

AMm4
π

5(8π)3f4
π

[
11u− 1

2u
− (10 + 8u2)

× arctan 2u +
(

1
8u3

+
5

2u

)
ln(1 + 4u2)

]
, (2)

with the abbreviation u = kf/mπ. One observes that
eq. (2) receives no contribution from the third diagram
in fig. 1 since

∫ ∞
0

dl 1 is set to zero in dimensional regular-
ization. The second and third diagrams in fig. 1 with three
medium insertions give rise to the following contribution
to the energy per particle:

Ē(kf ) =
9g4

AMm4
π

(4πfπ)4u3

∫ u

0

dxx2

∫ 1

−1

dy
[
2uxy + (u2−x2y2)H

]

×
[
γ + 1

2
ln(1 + s2) − s2

4

]
, (3)

with the auxiliary functions H = ln(u + xy) − ln(u −
xy) and s = xy +

√
u2 − x2 + x2y2. In the chiral limit

mπ = 0 only the contribution coming from the last term,
−s2/4, in the second square bracket survives. The corre-
sponding double integral

∫ u

0
dxx2

∫ 1

−1
dy . . . has the value

2u7(ln 4 − 11)/105. The expansion of the energy per par-
ticle up to order O(k4

f ) is completed by adding to the
terms eqs. (1)-(3) the contributions from the (relativis-
tically improved) kinetic energy, from 1π-exchange and
from iterated 1π-exchange written down in eqs. (5)-(11) of
ref. [4]. In case of the 1π-exchange contribution (eq. (6) in
ref. [4]) we neglect, of course, the small relativistic 1/M2-
correction of order O(k5

f ).
Now, we have to fix parameters. The pion decay con-

stant fπ = 92.4 MeV and the nucleon mass M = 939 MeV
are well known. As in ref. [4] we choose the value gA = 1.3.
This corresponds via the Goldberger-Treiman relation to
a πNN-coupling constant of gπN = gAM/fπ = 13.2 which
agrees with present empirical determinations of gπN from
πN-dispersion relation analyses [8]. We set mπ = 135 MeV
(the neutral pion mass) since this is closest to the expected
value of the pion mass in the absence of isospin-breaking
and electromagnetic effects.

The dashed line in fig. 2 shows the equation of
state of isospin-symmetric nuclear matter in the ap-
proach of ref. [3] using the above-mentioned input pa-
rameters. The coefficient γ = 4.086 has been adjusted
such that the minimum of the saturation curve lies
at Ē(kf0) = −15.3 MeV [9]. The predicted equilib-
rium density ρ0 = 0.138 fm−3 (corresponding to a Fermi

1 This is a technical notation for the difference between the
in-medium and vacuum nucleon propagator. For further de-
tails, see sect. 2 in ref. [4].
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Fig. 2. The energy per particle of isospin-symmetric nuclear
matter Ē(kf ) versus the nucleon density ρ = 2k3

f/3π2. The
dashed line corresponds to the approach of ref. [3]. The full
line results if the NN-contact interaction is treated in mean-
field approximation. In each case the coefficient γ is adjusted
such that the saturation minimum lies at Ē(kf0) = −15.3MeV.

momentum of kf0 = 250.1 MeV) is somewhat too low.
The same holds for the nuclear-matter compressibility
K = k2

f0Ē
′′(kf0) = 202 MeV. Of course, if we use the in-

put parameters of ref. [3] (fπ = 93 MeV, gA = 1.26,
mπ = 140 MeV and g0 + g1 = 3.23 corresponding to
γ = 4.07) we exactly reproduce the numerical results of
that work. We emphasize that the different treatment of
the two components of the NN-contact interaction is es-
sential in order to get (realistic) nuclear binding and sat-
uration in the framework of ref. [3]. If both components
were treated on equal footing in first order (technically
this is realized by deleting the contribution coming from
the third diagram in fig. 1) the energy per particle Ē(kf )
would not even develop a minimum.

3 Real single-particle potential

Next, we turn to the real part of the single-particle po-
tential U(p, kf ) below the Fermi surface (p ≤ kf ) in the
framework of ref. [3]. As outlined in ref. [5], the contribu-
tions to U(p, kf ) can be classified as two-body and three-
body potentials. From the first diagram in fig. 1 one gets
a contribution to the two-body potential of the form

U2(p, kf ) = −
2(γ + 1)g2

Ak3
f

(4πfπ)2
, (4)

which is just twice its contribution to the energy per par-
ticle (see eq. (1)). From the second diagram in fig. 1 one
derives a contribution to the two-body potential of the

form

U2(p, kf ) =
(γ + 1)g4

AMm4
π

(4π)3f4
π

×
{
u +

1
4x

(x3 − 3x− 3u2x− 2u3) arctan(u + x)

+
1

4x
(x3 − 3x− 3u2x + 2u3) arctan(u− x)

+
1

8x
(1 + 3u2 − 3x2) ln

1 + (u + x)2

1 + (u− x)2

}
, (5)

with the abbreviation x = p/mπ. The second and third
diagrams in fig. 1 give each rise to three different contri-
butions to the three-body potential. Altogether, they read

U3(p, kf ) =
3g4

AMm4
π

(4πfπ)4

×
∫ 1

−1

dy
{[

2uxy + (u2 − x2y2)H
]

×
[
γ + 1

2
ln(1 + s2) − s2

4

]

+
∫ s−xy

−xy

dξ
[
2uξ + (u2 − ξ2) ln

u + ξ

u− ξ

]

× (2γ + 1)(xy + ξ) − (xy + ξ)3

2[1 + (xy + ξ)2]

+
∫ u

0

dξ
ξ2

x

[
(γ+1) ln(1+σ2) − σ2

2

]
ln

|x+ξy|
|x−ξy|

}
, (6)

with the auxiliary function σ = ξy +
√

u2 − ξ2 + ξ2y2.
The real single-particle potential U(p, kf ) is completed by
adding to the terms eqs. (4)-(6) the contributions from
1π-exchange and iterated 1π-exchange written down in
eqs. (8)-(13) of ref. [5]. Again, the (higher-order) relativis-
tic 1/M2-correction to 1π-exchange (see eq. (8) in ref. [5])
is neglected for reasons of consistency.

The lower curve in fig. 3 shows the momentum de-
pendence of the real single-particle potential U(p, kf0)
at saturation density kf0 = 250.1 MeV as it arises in
the framework of Lutz et al. [3]. The predicted poten-
tial depth for a nucleon at the bottom of the Fermi sea
is only U(0, kf0) = −20.0 MeV. In magnitude this is
much smaller than the typical depth U0 � −53 MeV of
the empirical optical model potential [10] or the nuclear
shell model potential [11]. The upper curve in fig. 3 in-
cludes the (relativistically improved) single-nucleon ki-
netic energy Tkin(p) = p2/2M − p4/8M3. As required
by the Hugenholtz–van-Hove theorem [12] this curve ends
at the Fermi surface p = kf0 with the value Ē(kf0) =
−15.3 MeV. A further important check is provided by the
sum rule for the two- and three-body potentials U2,3(p, kf )
written down in eq. (5) of ref. [5]. It holds with very high
numerical accuracy in the present calculation.

The momentum dependence of the two (dashed) curves
in fig. 3 is completely unrealistic. Most seriously, the to-
tal single-particle energy Tkin(p)+U(p, kf0) (upper curve)
does not rise monotonically with the nucleon momen-
tum p, but instead it starts to bend downward above
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Fig. 3. The lower curve shows the real part of the single-
particle potential U(p, kf0) at saturation density kf0 =
250.1MeV in the approach of Lutz et al. [3]. The upper curve
includes in addition the relativistically improved kinetic energy
Tkin(p) = p2/2M − p4/8M3.

p � 190 MeV. This implies a negative effective nucleon
mass at the Fermi surface, M∗(kf0) � −3.5M , and a neg-
ative density of states with dramatic consequences for the
finite-temperature behavior of nuclear matter. Because of
such unrealistic features of the underlying single-particle
potential, the scheme of Lutz et al. [3] has to be modified
substantially.

The overly strong momentum dependence of U(p, kf0)
comes from the second and third diagrams in fig. 1 in
which the NN-contact interaction proportional to the large
coefficient γ+1 is further iterated. In order to demonstrate
this feature we drop these (iterated) three-loop diagrams
and keep the NN-contact interaction (of unspecified dy-
namical origin) at the mean-field level. The resulting equa-
tion of state obtained by leaving out the contributions
eqs. (2), (3) and adjusting γ = 6.198 is shown by the full
line in fig. 2. The predicted saturation density is now ρ0 =
0.174 fm−3 (corresponding to a Fermi momentum of kf0 =
270.3 MeV) and the nuclear-matter compressibility has
the value K = 253 MeV. We emphazise that the scheme
of ref. [3] modified by a mean-field treatment of the NN-
contact interaction becomes fully equivalent to the trun-
cation at fourth order in small momenta of our previous
work [4,5] after the identification of parameters, γ + 1 =
10g2

AΛM/(4πfπ)2, with Λ � 0.61 GeV denoting the cut-off
scale. We remind that in ref. [4] the necessary short-ranged
attractive contribution was not introduced explicitly, but
generated at second order by iterated 1π-exchange em-
ploying (the more physical) cut-off regularization.

The lower full curve in fig. 4 shows the momentum
dependence of the real single-particle potential at satura-
tion density kf0 = 270.3 MeV which results in a mean-field
approximation of the NN-contact interaction (by leaving
out the contributions eqs. (5), (6)). The predicted poten-
tial depth U(0, kf0) = −54.8 MeV is in good agreement
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Fig. 4. The lower curve shows the real part of the single-
particle potential U(p, kf0) at saturation density kf0 =
270.3MeV in a mean-field treatment of the NN-contact inter-
action.

with that of optical model [10] or nuclear shell model po-
tentials [11]. Most importantly, the total single-particle
energy Tkin(p)+U(p, kf0) (upper curve) grows now mono-
tonically with the nucleon momentum p, as it should. The
up- and downward bending of the lower full curve in fig. 4
is however still too strong. The negative slope of U(p, kf0)
at the Fermi surface p = kf0 leads to a too large effective
nucleon mass M∗(kf0) � 2.9M which reflects itself in a
too high critical temperature Tc � 25 MeV of the liquid-
gas phase transition [7].

Another possibility (closer in spirit to the original pro-
posal of Lutz et al. [3,6]) is to keep the (large) components
of the NN-contact interaction proportional to g0,1 at the
mean-field level and to iterate only the (small) compo-
nents proportional to g2

A/4. Such a “partial mean-field
approximation” is realized by simply setting γ = 0 in
eqs. (2), (3), (5), (6). In fact this approach is fully equiva-
lent to calculating the 1π-exchange Fock diagram and the
iterated 1π-exchange Hartree and Fock diagrams with the
“regularized” 1π-exchange NN T -matrix of the form

T (1π)
NN =

g2
A

4f2
π

[
�σ1 · �q �σ2 · �q
m2

π + �q 2
− �σ1 · �σ2

3

]
�τ1 · �τ2 . (7)

Here, �σ1,2 and �τ1,2 denote, as usual, the spin and isospin
operators of the two nucleons and �q is the momentum
transfer between both nucleons carried by the exchanged
pion. When using the T -matrix, eq. (7) the zero-range
pieces generated by 1π-exchange are removed order by
order as proposed in ref. [6].

After adjusting the coefficient γ = 5.363 to the max-
imum binding energy −Ē(kf0) = 15.3 MeV one finds in
this “partial mean-field approximation” an equilibrium
density of ρ0 = 0.190 fm−3 (corresponding to a Fermi mo-
mentum of kf0 = 278.3 MeV) which lies somewhat too
high. At the same time the nuclear compressibility comes
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out as K = 248 MeV and the potential depth increases (in
magnitude) to U(0, kf0) = −63.5 MeV. A very welcome
side effect of this “partial mean-field approximation” is a
weaker p-dependence of the real single-particle potential
U(p, kf0) implying a more realistic value of the effective
nucleon mass at the Fermi surface of M∗(kf0) � 1.5M .
Furthermore, if one employs cut-off regularization (in-
stead of dimensional regularization) the adjustable param-
eter γ = 5.363 can be interpreted in terms of a momen-
tum cut-off Λ � 0.57 GeV by making use of the relation
γ = 2g2

AΛM/(2πfπ)2.

4 Imaginary single-particle potential

In this section, we discuss the imaginary part of the single-
particle potential W (p, kf ) for p ≤ kf as it arises in the
scheme of Lutz et al. [3]. This quantity determines the
half-width of nucleon hole states in the Fermi sea. As
outlined in ref. [5] the contributions to W (p, kf ) can be
classified as two-body, three-body and four-body terms.
From the second and third diagrams in fig. 1 one derives
a two-body term of the form

W2(p, kf ) =
g4

AMm4
π

(8π)3f4
π

×
{
u2x2 +

3u4

2
− x4

10
+ (γ + 1)

[
4 + 14u2 − 22x2

3

+
2
x

(3x2 − 3u2 − 1)
[

arctan(u+x) − arctan(u−x)
]

+
1
x

(x3 − 3x− 3u2x− 2u3) ln[1 + (u + x)2]

+
1
x

(x3 − 3x− 3u2x + 2u3) ln[1 + (u− x)2]
]}

. (8)

The associated three-body term reads

W3(p, kf ) =
g4

AMm4
π

(8π)3f4
π

{
2x4 − 6u4 + (γ + 1)

×
[

41x2

3
− 31u2 − 5 − (u2 − x2)2

−3 ln(1 + 4x2) +
(

6x− 3
2x

)
arctan 2x

+
[

arctan(u + x) − arctan(u− x)
]

× 1
2x

[
(u2 − x2)3 + (12u2 + 27)(u2 − x2) + 8

]

+
(

6 + 9u2 +
2u3

x
− 3x2

)
ln[1 + (u + x)2]

+
(

6 + 9u2 − 2u3

x
− 3x2

)
ln[1 + (u− x)2]

]}
, (9)
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Fig. 5. The imaginary part of the single-particle potential
W (p, kf0) at saturation density versus the nucleon momen-
tum p. The dashed line corresponds to the approach of Lutz et
al. [3] and the full line shows the result obtained in a mean-field
treatment of the NN-contact interaction.

and the four-body term is given by the expression

W4(p, kf ) =
g4

AMm4
π

(8π)3f4
π

{
3u4 + 2u2x2 − 17x4

5

+(γ + 1)
[
1 + 20u2 − 28x2

3
+ (u2 − x2)2

+6 ln(1 + 4x2) +
(

3
x
− 12x

)
arctan 2x

+
[

arctan(u + x) − arctan(u− x)
]

× 1
2x

[
3x4 + 6u2x2 − 9u4 − (u2 − x2)3

+27x2 − 15u2 − 7
]

+ 2(x2 − 3 − 3u2)

×
(

ln[1 + (u + x)2] + ln[1 + (u− x)2]
)]}

. (10)

The additional contributions from the iterated 1π-
exchange Hartree and Fock diagram are collected in
eqs. (20)-(25) of ref. [5]. The total imaginary single-
particle potential evaluated at zero nucleon momentum
(p = 0) can even be written as a closed form expression

W (0, kf ) =
3πg4

AMm4
π

(4πfπ)4

{
u4

2
+ (γ − 2)u2

− 2u2

1 + u2
+

π2

12
+ Li2(−1 − u2)

+
[
4 − γ + ln(2 + u2) − 1

2
ln(1 + u2)

]
ln(1 + u2)

}
,

(11)

where Li2(−a−1) =
∫ 1

0
dζ (ζ + a)−1 ln ζ denotes the con-

ventional dilogarithmic function.
The dashed line in fig. 5 shows the momentum depen-

dence of the imaginary single-particle potential W (p, kf0)
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at saturation density kf0 = 250.1 MeV as it arises in the
approach of ref. [3]. The predicted value W (0, kf0) =
51.1 MeV lies outside the range 20–40 MeV obtained
in calculations based on (semi)-realistic NN-forces [13,
14]. The full line in fig. 5 corresponds to a mean-field
approximation of the NN-contact interaction. Up to a
slight change in the equilibrium Fermi momentum kf0 =
270.3 MeV the full curve in fig. 5 agrees with the one
shown in fig. 4 of ref. [5]. The considerably reduced
value W (0, kf0) = 28.4 MeV indicates the large contri-
bution of the iterated diagrams in fig. 1 to the imag-
inary single-particle potential W (p, kf ). Note that both
curves in fig. 5 vanish quadratically near the Fermi sur-
face as required by Luttinger’s theorem [15]. As further
check on our calculation we verified the zero sum rule:∫ kf

0
dp p2[6W2(p, kf ) + 4W3(p, kf ) + 3W4(p, kf )] = 0, for

the two-, three- and four-body components W2,3,4(p, kf )
written in eqs. (8)-(10). In the “partial mean-field approx-
imation” (realized by setting γ = 0 in eqs. (8)-(11)) the
imaginary single-particle potential gets also substantially
reduced as indicated by the value at zero nucleon momen-
tum, W (0, kf0 = 278.3 MeV) = 24.0 MeV.

5 Neutron matter

In this section we discuss the equation of state of pure neu-
tron matter. In the scheme of Lutz et al. [3] the energy
per particle of pure neutron matter Ēn(kn) depends exclu-
sively on the coefficient g1 parameterizing the short-range
NN-interaction in the channel with total isospin I = 1.
There is no need to write down explicitly the contribu-
tions of the diagrams in fig. 1 to Ēn(kn). These expres-
sions are easily obtained from eqs. (1)-(3) by replacing
kf by the neutron Fermi momentum kn, by replacing the
coefficient γ by a new one γn, and by multiplying the
formulas with a relative isospin factor 1/3. The relation
(γn + 1)g2

A/4 = g1 + g2
A/4 defines this new coefficient γn.

The additional contributions to Ēn(kn) from the kinetic
energy, 1π-exchange and iterated 1π-exchange are writ-
ten down in eqs. (32)-(37) of ref. [4] (neglecting again the
relativistic 1/M2-correction to 1π-exchange).

The dashed line in fig. 6 shows the energy per particle
of pure neutron matter Ēn(kn) versus the neutron density
ρn = k3

n/3π2 as it arises in the approach of ref. [3]. The
coefficient γn = 0.055 has been adjusted to the empirical
value of the asymmetry energy A(kf0 = 250.1 MeV) =
33.2 MeV (see next section). The downward bending of
the dashed curve in fig. 6 above ρn > 0.15 fm−3 is even
stronger than in our previous work [4] (see fig. 8 therein).
This property can be understood by taking the chiral limit
(mπ → 0) of the calculated neutron matter equation of
state and considering the coefficient βn in front of the
term k4

n/M
3. In the approach of Lutz et al. [3] one has

βn = − 1
70

(gπN

4π

)4

(4π2+17+16 ln 2)− 3
56

= −1.23 , (12)

which is 2.2 times the negative value of βn found in ref. [4].
The full line in fig. 6 shows the equation of state of pure
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Fig. 6. The energy per particle of pure neutron matter Ēn(kn)
versus the neutron density ρn = k3

n/3π2. The dashed line cor-
responds to the approach of Lutz et al. [3] and the full line
shows the result obtained in mean-field approximation of the
nn-contact interaction. The dotted line stems from the many-
body calculation of the Urbana group [16].

neutron matter obtained in the mean-field approximation
of the nn-contact interaction proportional to γn + 1 af-
ter adjusting γn = 0.788 to the empirical value of the
asymmetry energy A(kf0 = 270.3 MeV) = 33.2 MeV. The
downward bending of the full curve in fig. 6 is weaker and
it sets in at somewhat higher densities ρn > 0.2 fm−3. The
dotted line in fig. 6 stems from the many-body calculation
of the Urbana group [16]. This curve should be considered
as a representative of the host of existing realistic neu-
tron matter calculations which scatter around it. We also
note that the result for Ēn(kn) obtained in the “partial
mean-field approximation” (after adjusting γn = −0.131)
is very similar to the full line in fig. 6 for neutron densi-
ties ρn < 0.25 fm−3. The systematic deviations observed
in fig. 6 indicate that the neutron matter equation of state
of ref. [4] cannot be improved by treating the short-range
NN-dynamics as proposed in ref. [3].

6 Asymmetry energy

Finally, we turn to the density-dependent asymmetry en-
ergy A(kf ) in the approach of ref. [3]. The asymmetry
energy is generally defined by the expansion of the en-
ergy per particle of isospin-asymmetric nuclear matter
(described by different proton and neutron Fermi mo-
menta kp,n = kf (1 ∓ δ)1/3) around the symmetry line:
Ēas(kp, kn) = Ē(kf )+δ2 A(kf )+O(δ4). Evaluation of the
first diagram in fig. 1 leads to the following contribution
to the asymmetry energy:

A(kf ) =
g2

Ak3
f

3(4πfπ)2
(3γ − 2γn + 1) , (13)

with the coefficients γ = 2(g0 + g1)/g2
A and γn = 4g1/g

2
A

in the notation of ref. [3]. Putting a medium insertion at
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each of two nucleon propagators with equal orientation
one gets from the second and third diagrams in fig. 1

A(kf )=
g4

AMm4
π

3(8π)3f4
π

{
2(γ+1)u + 8(2γ−γn+1)u2 arctan 2u

+
[
(2γn−6γ−4)u− γ + 1

2u

]
ln(1 + 4u2)

}
. (14)

The same diagrams with three medium insertions give rise
to the following contribution to the asymmetry energy:

A(kf )=
g4

AMm4
π

(4πfπ)4u3

∫ u

0

dxx2

∫ 1

−1

dy

{[
2uxy+(u2−x2y2)H

]

×
(

4ss′ − 2
3
s′ 2 − 2

3
ss′′ − 7

2
s2

)

+(γ + 1)
{[

uxy(11u2 − 15x2y2)
3(u2 − x2y2)

+
1
2

(u2 − 5x2y2)H
]

ln(1 + s2) − 4u2s2H

3(1 + s2)

+
2uxy + (u2 − x2y2)H

6(1 + s2)2

×
[
8s(1 + s2)(3s + s′′ − 5s′)

+(1 − s2)(3s2 − 8ss′ + 8s′ 2)
]}

+2u2(γn + 1)
[

2uxy ln(1 + s2)
3(u2 − x2y2)

+
(

ln(1 + s2) +
2s2

3(1 + s2)

)
H

]}
, (15)

with s′ = u ∂s/∂u and s′′ = u2 ∂2s/∂u2 denoting partial
derivatives. In the chiral limit mπ = 0 only the terms in
the first and second line of eq. (15) survive. The corre-
sponding double integral

∫ u

0
dxx2

∫ 1

−1
dy . . . has the value

4u7(ln 4 − 1)/15. The asymmetry energy is completed by
adding to the terms eqs. (13)-(15) the contributions from
the kinetic energy, (static) 1π-exchange and iterated 1π-
exchange written down in eqs. (20)-(26) of ref. [4].

The dashed line in fig. 7 shows the density dependence
of the asymmetry energy A(kf ) in the approach of Lutz
et al. [3] with the coefficient γn = 0.055 adjusted (at fixed
γ = 4.086) to the empirical value A(kf0 = 250.1 MeV) =
33.2 MeV [9]. The full line in fig. 7 corresponds to
the result obtained in mean-field approximation of the
NN-contact interaction by dropping the contributions
eqs. (14), (15). In that case the empirical value A(kf0 =
270.3 MeV) = 33.2 MeV [9] is reproduced by tuning (at
fixed γ = 6.198) the coefficient γn to the value γn = 0.788.
We also note that the result for the density-dependent
asymmetry energy A(kf ) in the “partial mean-field ap-
proximation” (realized by setting γ = 5.363 and γn =
−0.131 in eq. (13) and by setting γ = γn = 0 in eqs. (14),
(15)) is almost identical to the full line in fig. 7. Both
curves in fig. 7 behave rather similarly. In each case the
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Fig. 7. The asymmetry energy A(kf ) versus the nucleon den-
sity ρ = 2k3

f/3π2. The dashed line corresponds to the approach
of Lutz et al. [3] and the full line shows the result obtained in
mean-field approximation of the NN-contact interactions. The
parameter γn is in each case adjusted to the (empirical) value
A(kf0) = 33.2MeV [9].

asymmetry A(kf ) reaches it maximum close to the respec-
tive saturation density ρ0 and then it starts to bend down-
ward. Since the same (somewhat unusual) feature has also
been observed in ref. [4] it seems to be generic for pertur-
bative chiral πN-dynamics truncated at three-loop order.

7 Concluding remarks

In this work we have continued and extended the chiral
approach to nuclear matter of Lutz et al. [3] by calcu-
lating the underlying single-particle potential. The po-
tential for a nucleon at the bottom of the Fermi sea
U(0, kf0) = −20.0 MeV is not deep enough. Most seri-
ously, the total single-particle energy Tkin(p) + U(p, kf0)
does not grow monotonically with the nucleon momentum
p. The thereof implied negative effective nucleon mass at
the Fermi surface M∗(kf0) � −3.5M and the negative
density of states will ruin the behavior of nuclear matter
at finite temperatures. The half-width of nucleon holes
at the bottom of the Fermi sea W (0, kf0) = 51.1 MeV
comes also out too large in that approach. A good nuclear-
matter equation of state and better (but still not yet opti-
mal) single-particle properties can be obtained if the NN-
contact interaction (proportional to the large coefficient
g0 + g1 + g2

A/2) is kept at the mean-field level and not
further iterated. The so-modified scheme is fully equiva-
lent to a calculation without any explicit short-range NN-
terms when employing cut-off regularization [4]. The en-
ergy per particle of pure neutron matter Ēn(kn) and the
asymmetry energy A(kf ) depend on a second parameter
g1 in the scheme of ref. [3]. Their density dependence is
similar to the results of the one-parameter calculation in
ref. [4]. The downward bending of Ēn(kn) and A(kf ) above
saturation density ρ0 (less pronounced if the NN-contact
interaction is kept at the mean-field level) seems to be
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generic for perturbative chiral πN-dynamics. More elabo-
rate calculations of nuclear matter in effective (chiral) field
theory with particular attention on the short-range NN-
dynamics are necessary. It is mandatory that the effective
short-range NN-interaction is compatible with all (semi)-
empirical properties of nuclear matter simultaneously.

We thank M. Lutz for useful discussions. This work was sup-
ported in part by BMBF, GSI and DFG.
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